م.عمر المصرى

$$\cos^2\theta + \sin^2\theta = 1$$

$$tan\theta = \frac{sin\theta}{cos\theta}$$
 : $\theta \neq \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$

$$cot\theta = \frac{cos\theta}{sin\theta} : \theta \neq \pi k , k \in \mathbb{Z}$$

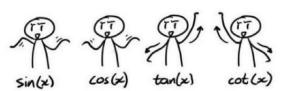
$$1 + tan^2\theta = \frac{1}{cos^2\theta}$$
: $\theta \neq \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$

$$1+cot^2\theta=\frac{1}{sin^2\theta}\colon\ \theta\neq\pi k\ ,\ k\in\mathbb{Z}$$

إشارات النسب المثلثية:

II	I		
$\sin > 0$	$\sin > 0$		
$\cos < 0$	$\cos > 0$		
$\tan < 0$	$\tan > 0$		
			
III	IV		
III $\sin < 0$	IV sin < 0		
$\sin < 0$	$\sin < 0$		

$$sin(-\theta) = -sin\theta$$


$$tan(-\theta) = -tan\theta$$

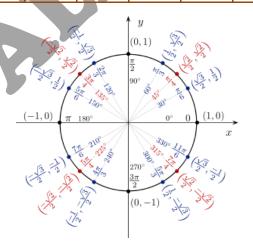
$$cos(-\theta) = \pm cos\theta$$

$$cos(-\theta) = +cos\theta$$
 $cot(-\theta) = -cot\theta$

الإرجاع إلى الربع الأول:

	-x	$\frac{\pi}{2} \pm x$	$\pi \pm x$	$\frac{3\pi}{2} \pm x$	$2\pi \pm x$	
sinx	-sinx	cosx	∓sinx	-cosx	±sinx	
cosx	cosx	∓sinx	-cosx	±sinx	cosx	
tanx	-tanx	∓cotx	±tanx	∓cotx	±tanx	
cotx	-cotx	∓tanx	±cotx	∓tanx	±cotx	

$0 < \theta < \pi/2$: النسب المثلثية لزاوية حادة



$$sin\theta = \frac{Opp}{Hyp}$$
 $cos\theta = \frac{Adj}{Hyp}$

$$tan\theta = \frac{Opp}{Adj}$$
 $cot\theta = \frac{Adj}{Opp}$

النسب الثلثية للزاويا الشهيرة:

θ	o°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8
cot	8	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

$$sin\, heta=rac{\sqrt{ قيار الزاوية }}{2}$$

$$\cos heta=rac{\sqrt{ ilde{a}$$
عدد الأصابح الموجودة فوق الزاوية $}{2}$

$$tan \, heta = rac{\sqrt{ قيام الزاوية }}{ عدد الأصابع الموجودة تحت الزاوية }$$

النسب المثلثية لجموع أو فرق زاويتين:

$$sin(A + B) = sinA.cosB + cosA.sinB$$

$$sin(A - B) = sinA.cosB - cosA.sinB$$

$$cos(A + B) = cosA.cosB - sinA.sinB$$

$$cos(A - B) = cosA.cosB + sinA.sinB$$

$$tan(A+B) = \frac{tanA + tanB}{1 - tanA \cdot tanB}$$

$$tan(A - B) = \frac{tanA - tanB}{1 + tanA \cdot tanB}$$

متطابقتان شهيرتان

$$sin(A + B)sin(A - B) = sin^2 A - sin^2 B$$

$$cos(A + B)cos(A - B) = cos^{2}A - cos^{2}B - 1$$

النسب المثلثية لضعف الراوية:

$$sin(2A) = 2sinA.cosA$$

$$\cos(2A) = \cos^2 A - \sin^2 A$$

$$cos(2A) = 2cos^2 A - 1$$

$$cos(2A) = 1 - 2sin^2A$$

$$tan(2A) = \frac{2tanA}{1-tan^2A}$$

النسب المثلثية لراوية بدلالة تجبب ضعف الراوية:

$$sin^2 A = \frac{1-cos(2A)}{2}$$

$$\cos^2 A = \frac{1 + \cos(2A)}{2}$$

$$tan^2A = \frac{1-cos(2A)}{1+cos(2A)}$$

النسب المثلثية لثلاثة أضعاف الزاوية:

$$sin(3A) = 3sinA - 4sin^3A$$

$$cos(3A) = 4cos^3A - 3cosA$$

دساتير التحويل من مجموع إلى جداء:

$$sinA + sinB = 2sin\left(\frac{A+B}{2}\right).cos\left(\frac{A-B}{2}\right)$$

$$sinA - sinB = 2cos\left(\frac{A+B}{2}\right).sin\left(\frac{A-B}{2}\right)$$

$$cosA + cosB = 2cos\left(\frac{A+B}{2}\right).cos\left(\frac{A-B}{2}\right)$$

$$cosA - cosB = -2sin\left(\frac{A+B}{2}\right).sin\left(\frac{A-B}{2}\right)$$

دساتير التحويل من جداء إلى مجموع:

$$sinAcosB = \frac{1}{2}[sin(A+B) + sin(A-B)]$$

$$cosAsinB = \frac{1}{2}[sin(A+B) - sin(A-B)]$$

$$cosAcosB = \frac{1}{2}[cos(A+B) + cos(A-B)]$$

$$sinAsinB = -\frac{1}{2}[cos(A+B) - cos(A-B)]$$

حل المعادلات المثلثية :

$$sinx = siny \Rightarrow \begin{cases} x = y + 2\pi k \\ x = \pi - y + 2\pi k \end{cases}$$

$$cosx = cosy \Rightarrow \begin{cases} x = y + 2\pi k \\ x = -y + 2\pi k \end{cases}$$

$$tanx = tany \Rightarrow \{x = y + \pi k \}$$

$$cotx = coty \Rightarrow \{x = y + \pi k \}$$

حالات خاصة عند حل العادلات المثلثية :

$$sinx = 0 \Rightarrow \{x = \pi k\}$$

$$cosx = 0 \Rightarrow \{x = \frac{\pi}{2} + \pi k\}$$

$$sinx = 1 \Rightarrow \{x = \frac{\pi}{2} + 2\pi k\}$$

$$cosx = 1 \Rightarrow \{x = 2\pi k\}$$

$$sinx = -1 \Rightarrow \{x = -\frac{\pi}{2} + 2\pi k\}$$

$$cosx = -1 \Rightarrow \{x = \pi + 2\pi k\}$$